Subsemigrupos de monoides conmutativos finitamente generados
- García García, Juan Ignacio
- José Carlos Rosales González Co-director
- Pedro Abelardo García Sánchez Co-director
Defence university: Universidad de Granada
Fecha de defensa: 25 May 2001
- Antonio Campillo López Chair
- Enrique Rafael Aznar García Secretary
- Pilar Pisón Casares Committee member
- Benjamin Steinberg Committee member
- Emilio Briales Morales Committee member
Type: Thesis
Abstract
En esta memoria de tesis se abordan diferentes vias para el estudio de los subsemigrupos de monoides conmutativos, Estos ultimos se toman la mayoria de las veces finitamente generados por lo que en general el estudio de sus subsemigrupos es realizado via una de sus presentaciones. Las lineas de estudio que se realizan son las tres siguientes. En primer lugar se consideran los monoides finitamente generados que cumplen tener todos sus submonoides finitamente generados. Para ellos se da una caracterización y un algoritmo tal que a partir de una presentación de un monoide finitamente generado nos dice si este tiene o no todos sus submonoides finitamente generados. La segunda linea considerada que los semigrupos que tenemos son subsemigrupo de un monoide que cumple ser un grupo. El principal resultado que se proporciona es un teorema de estructura de la clase formada por todos los subsemigrupos no grupos de grupos finitamente generados. Ademas, imponiendo nuevas condiciones a la citada estructura obtiene diferentes clases de semigrupos. La linea de estudio mas extensa es la delicada al estudio de los ideales de monoides finitamente generados. En primer lugar se da un algoritmo para determinar a partir de una presentacion de un monoide finitamente generado si este contiene un ideal que es grupo. Basandose en ese algoritmo se proporciona un metodo para el calculo del conjunto de elementos idempotentes de un monoide. Otro algoritmo que se sirve para ver cuando un semigrupo es debilmente reductivo. A continuación es presentada una generalización del concepto de presentación para ideales y a partir del mismo se proporcionan algoritmos para el estudio de las propiedades de un ideal dado. Entre otras se estudian su cancelatividad, el calculo de sus componentes arquimedianas, sus elementos idempotentes, libre de torsion, etc. En la memoria tambien se considera el estudio de los ideales primos, primarios, radicales e irreducibles, para los