Iberulitos: partículas atmosféricas "gigantes" potencialmente inhalables

  1. Párraga Martínez, Jesús Francisco
  2. Delgado Calvo-Flores, Gabriel
  3. Martín García, Juan Manuel
  4. Delgado Calvo-Flores, Rafael
Revue:
Actualidad médica

ISSN: 0365-7965

Année de publication: 2013

Tomo: 98

Número: 789

Pages: 86-91

Type: Article

D'autres publications dans: Actualidad médica

Résumé

Objectives: To analyze the sedimentable atmospheric particulate matter and �Iberulites� (a giant aggregate particle always found in the PMS, with atmospheric genesis and inhalable) during the summer months of 2010, in which there were 14 African dust events at Granada city. Methods: The sedimentable particles were sampled in regime of �dry deposition�. Iberulites were isolated from sedimentable particles in the field of a stereomicroscope with the aid of a needle. The particle size was determined by laser, the mineralogical composition with X-ray diffraction and the morphology and the elemental composition with scanning electron microscopy and microanalysis coupled. Results: The average rate of deposition of sedimentable particles was 57 mg m -2 day -1 . The 84% (by volume) of the sedimentable particles has a size between 6 and 125 ?m with a 16% of particles <10 ?m, 4.1 % <2.5 ?m and 1.5 % <1 ?m. In all the samples of sedimentable particles, Iberulites were found in a percentage of 3.3 ± 2.5. Iberulites are spherical in shape and its color is reddish. The average diameter of Iberulites is 87.9 ± 27.6 ?m, its constituent particles are between 0.5 and 7 ?m. The mineralogical composition of the sedimentable particles is a mix of dolomite, calcite, quartz, phyllosilicates, feldspar, gypsum, halite and hematite. The mineralogical composition of Iberulites differs from the total sedimentable particles. In the sedimentable particles, fibers, pollen and dust mites have been detected. In Iberulites we observed biological particles like remains of diatoms, marine nanoplankton, bacteria, brochosomes and it is possible that there is virus. Conclusions: The sedimentable particles come from local and African soils. Iberulites are generated in the atmosphere from mineral and biological particles coming from African soils. The existence of biological material transported from Africa makes Iberulites as potential vectors of pathogens and allergens.

Références bibliographiques

  • Adamson I, Prieditis H, Vicent R. Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction. Toxicol Appl Pharmacol 1999; 157: 43-50.
  • Avila A, Queralt-Mitjans I, Alarcon M. Mineralogical composition of African dust delivered by red rains over northeastern Spain. J Geophys Res 1997; 102 (D18):21977.
  • Calastrini F, Guarnieri F, Becagli S, et al. Desert dust outbreaks over Mediterranean Basin: A modeling, observational, and synoptic analysis approach. Adv Meteor 2012; doi: 10.1155/2012/246874
  • CALIMA (Caracterización de aerosoles originados por intrusiones de masas de aire africanas). Datos suministrados como fruto del Acuerdo de encomienda de Gestión entre el Ministerio de Agricultura, Alimentación y Medio Ambiente y la Agencia Estatal Consejo Superior de Investigaciones Científicas, para la realización de trabajos relacionados con el estudio y evaluación de la contaminación atmosférica por material particulado y metales en España (www.calima.es)
  • Carrico CM, Bergin MH, Shrestha AS, Dibb JE, Gomes L, Harry JM. The importance of carbon and mineral dust to seasonal aerosol in the Nepal Himalaya. Atmos Environ 2003; 37: 2811-2824.
  • Creamean JM, Susky K, Rosenfeld D, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the Western U.S. Sciencexpress/ http://www.sciencemag.org/content/early/recent/28february2013/page10/10.1126/science.1227279
  • Cuevas E, Pérez C, Baldasano JM, Camino C, Alonso-Pérez S, Basart S. Long-term retrospective analysis of dust and AI with meningitis epidemics data, MACC O-INT WP3. (Meningitis linked to mineral dust transport in the Sahel). 2nd. Delivery Report. 1-50; 2011.
  • Daniel Vallero. Fundamentals of Air Pollution. Academic Press; 2010.
  • Díaz Hernández JL, Párraga J. The nature and tropospheric formation of iberulites: Pinkish mineral microspherulites. Geochim et Cosmochim Acta 2008; 72: 3883-3906.
  • Donkelaar A, Martin R, Brauer M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect. 2010; 118(6): 847-855.
  • Franzen LG, Hjelmroos M, Karllberg P, Brorstrom-Lunden E, Juntto S, Savolainen A. The yellow snow episode of northern Fennoscandia, March 1991: a case study of long distance transport of soil, pollen and stable organic compounds. Atmos Environ 1994; 22: 3587-3604.
  • González Macías M, Balboa de Paz F, Rueda Esteban S. Prevalencia de la sensibilización a neumoalérgenos en nuestro medio. Acta pediátrica 2007; 65(9):441-444.
  • Griffin DW. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microb Rev 2007; 20 (3): 459-477.
  • Guerzoni S, Chester R. The impact of desert dust across the Mediterranean. Kluwer, Dordretch, The Netherlands; 1996.
  • Gyan K, Henry W, Lacaille A, et al. African dust clouds are associated with increased paediatric asthma accident and emergency admissions on the Caribbean island of Trinidad. Int J Biometeorol 2005; 29:371- 376.
  • IARC (International Agency for Research on Cancer). Silica, some silicates, coal dust and para-Aramid Fibres, IARC Monographs, vol. 68, 1997.
  • Jaenicke R. Abundance of cellular material and proteins in the atmosphere. Science 2005; 308: 73.
  • Jiménez E, Linares C, Martínez D, Díaz J. Role of Saharan dust in the relationship between particulate matter and short-term daily mortality among the elderly in Madrid (Spain), Sci Total Env 2010; 408: 5729- 5736.
  • Lafon S, Rajot JL, Alfaro S, Gaudichet A. Quantification of iron oxides in desert aerosol. Atmos Environ 2004; 38:1211-1218.
  • Mahowald N, Luo Ch. A less dusty future? Geophys Res Letters 2003; 30(17): 1903.
  • Martín J D. XPowder. Quantitative and Qualitative Powder X-ray Diffraction Analysis, version 2004.04. Orion Network Communication, Granada. Available from: http://www.Xpowder.com
  • Mellor S, Carpenter S, Harrup L, Baylis M, Mertens P. Bluetongue in Europe and the Mediterranean Basin. History of occurrence prior to 2006. Prev Veter Med 2008; 87: 4-20.
  • Pósfai M, Axisa D, Tompa E, Freney E, Bruintjes R, Buseck P. Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia. Atm. Res. 2012; doi: 10.1016/jatmers.2012.12.001
  • Prospero JM. Long range transport of mineral the dust in the global atmosphere: impact of African dust on the environment of the southeastern United States. Proc Natl Acad Sci USA 1999; 96: 3396-3403.
  • Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From air pollution to climate change. Wiley: New Jersey; 2006.
  • Swap R, Garstang M, Macko S, Talbot R. The long range transport of southern African aerosols to the tropical South Atlantic. J Geophys Res 1996; 102: 28501-28509.
  • United Nations University 2007; Earth Summit +5; UN conventional to combat Desertification, DPI/1870/SD
  • Valavanidis A, Fiotakis K, Vlachogianni T. Airborne particulate matter and human health. Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Env Sci Health Part C 2008; 26: 339-362.
  • Van den Berg E. España, el desierto que avanza. National Geographic 2008 Junio; 22 (6): 34-53.