Comparison between different liquid-liquid and solid phase methods of extraction prior to the identification of the phenolic fraction present in olive oil washing wastewater from the two-phase olive oil extraction system

  1. Jiménez-Herrera, S.
  2. Ochando-Pulido, J. M.
  3. Martínez-Ferez, A.
Revista:
Grasas y aceites

ISSN: 0017-3495 1988-4214

Año de publicación: 2017

Volumen: 68

Número: 3

Tipo: Artículo

DOI: 10.3989/GYA.0225171 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Grasas y aceites

Resumen

Los compuestos fenólicos presentes en las aguas residuales de la industria oleícola (OMW) se caracterizan por una gran actividad antioxidante. Por otra parte, suponen un problema medioambiental debido a que son difíciles de degradar. El objetivo de este trabajo fue la identificación de estos compuestos biológicamente activos que se encuentran en las OMW generadas del proceso de obtención del aceite de oliva por el sistema de dos fases, para así convertir un residuo contaminante en una fuente de antioxidantes naturales. Tras optimizar el proceso de extracción de los compuestos fenólicos utilizando extracción líquido-líquido (LLE) y extracción en fase sólida (SPE), se obtuvo que la secuencia más apropiada comprendió una centrifugación previa para eliminar la fracción lipídica, seguida de una extracción líquida con acetato de etilo o una SPE. Los compuestos más importantes identificados en las aguas residuales del lavado del aceite de oliva (OOWW) fueron tirosol, hidroxitirosol y el ácido succínico, mientras que los de las aguas residuales derivadas del lavado de las aceitunas (OWW) fueron cresol, catecol, 4-metilcatecol, ácido hidrocinámico y ácido p-hidroxi-hidrocinámico.

Información de financiación

The Spanish Ministry of Science and Innovation is acknowledged for funding the project CTQ2010-21411: Depuration of wastewater from olive oil industry for its reuse in the process and CTM2014-61105-JIN.

Financiadores

Referencias bibliográficas

  • Allouche N, Fri I, Sayadi S. 2004. Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J. Agric. Food Chem. 52, 267-273. https://doi.org/10.1021/jf034944u PMid:14733507
  • Bisignano G, Tomaino A, Lo Cascio R, Crisafi G, Uccella N, Saija A. 1999. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 51, 971–974. https://doi.org/10.1211/0022357991773258 PMid:10504039
  • Borja R, Raposo F, Rincón B. 2006. Treatment technologies of liquid and solid wastes from two-phase olive oil mills. Grasas Aceites 57, 32-46. https://doi.org/10.3989/gya.2006.v57.i1.20
  • Bouallagui Z, Han J, Isoda H, Sayadi S. 2011. Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food Chem. Toxicol. 49, 179–184. https://doi.org/10.1016/j.fct.2010.10.014 PMid:20955751
  • Bouzanquet Q, Barril C, Clark AC, Dias DA, Scollary GR. 2012. A novel glutathione-hydroxycinnamic acid product generated in oxidative wine conditions. J. Agric. Food Chem. 60, 12186–12195. https://doi.org/10.1021/jf3034072 PMid:23163604
  • Brune M, Hallberg L, Skanberg A. 1991. Determination of iron-binding phenolic groups in foods. J. Food Sci. 56, 128–131. https://doi.org/10.1111/j.1365-2621.1991.tb07992.x
  • Bullock CM, Bicho PA, Zhang Y, Saddler JN. 1996. A solid chemical oxygen demand (COD) method for determining biomass in waste waters. Water Res. 30, 1280–1284. https://doi.org/10.1016/0043-1354(95)00271-5
  • Bulotta S, Corradino R, Celano M, D'Agostino M, Maiuolo J, Oliverio M. 2011. Antiproliferative and antioxidant effects on breast cancer cells of oleuropein and its semisynthetic peracetylated derivatives. Food Chem. 127, 1609–1614. https://doi.org/10.1016/j.foodchem.2011.02.025
  • Ca-izares P, Paz R, Sáez C, Rodrigo MA. 2009. Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. Environ. Manag. 90, 410-420.
  • De Marco E, Savarese M, Paduano A, Sacchi R. 2007. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem. 104, 858-867. https://doi.org/10.1016/j.foodchem.2006.10.005
  • Elkacmi R, Kamil N, Bennajah M, Kitane S. 2016. Extraction of oleic acid from Moroccan olive mill wastewater, Biomed. Res. Int. 2016, 1–9. https://doi.org/10.1155/2016/1397852 PMid:26933663 PMCid:PMC4736953
  • Elkacmi R, Kamil N, Bennajah M. 2017. Separation and purification of high purity products from three different olive mill wastewater samples. J. Environ. Chem. Eng. 5, 829-837. https://doi.org/10.1016/j.jece.2017.01.005
  • Fabiani R, Rosignoli P, De Bartolomeo A, Fuccelli R, Servili M, Morozzi G. 2011. The production of hydrogen peroxide is not a common mechanism by which olive oil phenol compounds induce apoptosis on HL60 cells. Food Chem. 125, 1249–1255. https://doi.org/10.1016/j.foodchem.2010.10.052
  • Geelings A, López-Huertas E, Morales JC, Boza J, Jiménez J. 2003. Natural products and derivatives thereof for protection against neurodegenerative diseases. Patent no. WO 2003/082259.
  • Gómez-Acebo E, Alcami J, Aunon D. 2011. Topical use of hydroxytyrosol and derivatives for the prevention of HIV infection'. U.S. Patent Application No. 13/513,061.
  • Hernández T, Estrella I, Carlavilla D, Martín-Álvarez PJ, Moreno-Arribas MV. 2006. Phenolic compounds in red wine subjected to industrial malolactic fermentation and ageing on lees. Anal. Chim. Acta 563, 116–125. https://doi.org/10.1016/j.aca.2005.10.061
  • Hodaifa G, Ochando-Pulido JM, Rodriguez-Vives S, Martinez A. 2013. Optimization of continuous reactor at pilot scale for olive-oil mill wastewater treatment by Fenton-like process. Chem. Eng. J. 220, 117-124. https://doi.org/10.1016/j.cej.2013.01.065
  • International Olive Oil Council (IOOC) [(accessed on 1 December 2016)]. Available online: http://www.internationaloliveoil.org/
  • Jiménez S, Micó MM, Arnaldos M, Ferrero E, Malfeito JJ, Medina F, Contreras S. 2017. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes. Chemosphere 168, 309-317. https://doi.org/10.1016/j.chemosphere.2016.10.055 PMid:27810529
  • Kikuzaki H, Hisamoto M, Hirose K, Akiyama K, Taniguchi H. 2002. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 50, 2161–2168. https://doi.org/10.1021/jf011348w PMid:11902973
  • Lafkaa TI, Lazoub AE, Sinanoglou VJ, Lazos ES. 2011. Phenolic and antioxidant potential of olive oil mill wastes. Food Chem. 125, 92–98. https://doi.org/10.1016/j.foodchem.2010.08.041
  • La Scalia G, Micale R, Marra FP, Cannizzaro L. 2017. A sustainable phenolic compound extraction system from olive oil mill wastewater, J. Clean Prod. 142, 3782-3788. https://doi.org/10.1016/j.jclepro.2016.10.086
  • Lesage-Meessen L, Navarro D, Maunier S, Sigoillot JC, Lorquin J, Delattre M, Simon JL, Asther M, Labat M. 2001. Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75, 501–507. https://doi.org/10.1016/S0308-8146(01)00227-8
  • Obied HK, Allen MS, Bedgood DR, Prenzler PD, Robards K, Stockmann R. 2005. Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agric. Food Chem. 53, 823–837. https://doi.org/10.1021/jf048569x PMid:15712986
  • Schieber A, Stintzing FC, Carle R. 2011. By-products of plant food processing as a source of functional compounds-recent developments. Trends Ecol. Evol. 12, 401-413.
  • Succinity. [(accessed on 5 December 2016)]. Available online: http://www.succinity.com
  • Takaç S, Karakaya A. 2009. Recovery of Phenolic Antioxidants from Olive Mill Wastewater. Recent Pat. Chem. Eng. 2, 230-237. https://doi.org/10.2174/2211334710902030230
  • Torrecilla JS. 2010. Phenolic Compounds in Olive Oil Mill Wastewater. Olives and Olive Oil Health and Disease Prevention, chapter 40, Elsevier, pp. 357-365. https://doi.org/10.1016/B978-0-12-374420-3.00040-1
  • Torres de Pinedo A, Pe-alver P, Rondón P, Morales JC. 2005. Efficient lipase-catalyzed of new lipid antioxidants based on a catechol structure. Tetrahedron 61, 7654–7660. https://doi.org/10.1016/j.tet.2005.05.100
  • Vázquez-Velasco M, Esperanza L, Lucas R, Gómez-Martínez S, Bastida S, Marcos A. 2011. Effects of hydroxytyrosol-enriched sunflower oil consumption on CVD risk factors. Br. J. Nutr. 105, 1448–1452. https://doi.org/10.1017/S0007114510005015 PMid:21138606
  • Visioli F, Poli A, Galli C. 2002. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 22, 65–75. https://doi.org/10.1002/med.1028 PMid:11746176
  • Zafra A, Juárez MJB, Blanca R, Navalón A, González J, Vílchez JL. 2006. Determination of polyphenolic compounds in wastewater olive oil by gas chromatography–mass spectrometry. Talanta 70, 213–218. https://doi.org/10.1016/j.talanta.2005.12.038 PMid:18970755
  • Zagklis DP, Vavouraki AI, Kornaros ME, Paraskeva CA. 2015. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard. Mater. 285, 69-76. https://doi.org/10.1016/j.jhazmat.2014.11.038 PMid:25497019