Respuesta antioxidante de Artemia franciscana al nitroprusiato sódico (SNP)

  1. Torres-Rodríguez, Miguel 1
  2. Nogués Palenzuela, Álvaro 2
  3. Trenzado Romero, Cristina Elena 3
  4. Rufino-Palomares, Eva 4
  5. Pérez Jiménez, Amalia 4
  1. 1 Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes (Castellón), España.
  2. 2 Dpto. de Zoología. Universidad de Granada. Campus Fuentenueva s/n (Granada). España
  3. 3 Dpto. de Biología Celular. Universidad de Granada. Campus Fuentenueva s/n (Granada). España
  4. 4 Dpto. Bioquímica y Biología Molecular I. Universidad de Granada. Campus Fuentenueva s/n (Granada). España
Revista:
AquaTechnica: Revista Iberoamericana de Acuicultura

ISSN: 2737-6095

Año de publicación: 2021

Título del ejemplar: AquaTechnica, mayo-agosto (2021); v

Volumen: 3

Número: 2

Páginas: 91-104

Tipo: Artículo

DOI: 10.33936/AT.V3I2.3801 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: AquaTechnica: Revista Iberoamericana de Acuicultura

Resumen

De entre todos los contaminantes emergentes, los fármacos suscitan un gran interés científico. El nitroprusiato sódico (SNP), es uno de los cianógenos más utilizados como vasodilatador para el tratamiento de afecciones cardiacas. Debido a su uso generalizado y a la posible contaminación de los ambientes acuáticos asociado a la mala gestión de los residuos farmacológicos, es importante llevar a cabo estudios ecotoxicológicos que ayuden a aclarar su efecto en poblaciones de especies bioindicadoras como es el caso de invertebrados acuáticos. En base a esto, el objetivo del presente ensayo fue evaluar la toxicidad del SNP en el invertebrado acuático Artemia franciscana. Para tal fin, nauplios de Artemia. franciscana fueron sometidos a diferentes concentraciones de SNP (0-3000 µg/mL) durante 24 horas, determinándose los valores de LC20, LC50 y LC80. Para determinar la respuesta antioxidante y detoxificadora de dichos organismos frente al SNP, se cuantificó la actividad de diferentes enzimas implicadas en dicho proceso: Superóxido dismutasa (SOD), catalasa (CAT), Glutatión peroxidasa (GPX), Glutatión reductasa (GR), Glucosa-6-fosfato deshidrogenasa (G6PDH), Glutatión S-transferasa (GST), DT-diaforasa (DTD), así como los niveles de peroxidación lipídica a través del Malondialdehido (MDA) y la actividad antioxidante total (TEAC). Los resultados obtenidos indican la existencia de una correlación positiva entre las distintas concentraciones de SNP empleadas y la actividad de las enzimas GPX, GR, G6PDH y GST, así como para TEAC, lo cual se ha relacionado con un aumento en la capacidad antioxidante y detoxificadora de xenobióticos en dichos organismos frente al SNP. Sin embargo, no se han observado diferencias para SOD, CAT y DTD, así como en los niveles de peroxidación lipídica. Esto podría ser indicativo de que que la administración de SNP produce la inactivación de dichas enzimas y evidencia el efecto dependiente del tiempo que presenta el SNP en la peroxidación lipídica en nauplios de Artemia francicana.

Referencias bibliográficas

  • Aebi H. (1984). Catalase “in vitro”. Methods in Enzymology 105: 121-126.
  • Ansari F.A., Ali S.N, Mahmood R. (2015). Sodium nitrite induced oxidative stress causes membrane damage, protein oxidation, lipid peroxidation and alters major metabolic pathways in human erythrocytes. Toxicology in Vitro 29(7): 1878-1886.
  • Barceló D., López M.J. (2008). Contaminación y calidad química del agua: el problema de los contaminantes emergentes. Panel Científico-Técnico de seguimiento de la política de aguas 1, 24.
  • Bayliak M.M., Shmihel H.V., Lylyk M.P., Vytvytska O.M., Storey J.M., Storey K.B., Lushchak V.I. (2015). Alpha-ketoglutarate attenuates toxic effects of sodium nitroprusside and hydrogen peroxide in Drosophila melanogaster. Environmental Toxicology and Pharmacology 40 (2): 650-659.
  • Bhunia F., Saha N.C., Kaviraj A. (2000). Toxicity of thiocyanate to fish, plankton, worm, and aquatic ecosystem. Bulletin of Environmental Contamination & Toxicology 64(2): 197-204?
  • Bradford M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry 72: 248-254.
  • Buege J.A., Aust S.D. (1978). Microsomal lipid peroxidation. Methods in Enzymology 52: 302-310.
  • Carlberg I., Mannervik B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of biological chemistry 250(14): 5475-5480.
  • Chen S., Wu K., Knox R. (2000). Structure-function studies of DT-diaphorase (NQO1) and NRH: quinone oxidoreductase (NQO2)1. Free Radical Biology and Medicine 29(3-4): 276-284.
  • Conte F.P., Hootman S.R., Harris P.J. (1972). Neck organ of Artemia salina nauplii. Journal of Comparative Physiology 80(3): 239-246.
  • Dhont J., Dierckens K., Støttrup J., Van Stappen G., Wille M., Sorgeloos P. (2013). Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture. Advances in Aquaculture Hatchery Technology 242: 157-202.
  • Elejalde-Guerra J.I. (2001). Estrés oxidativo, enfermedades y tratamientos antioxidantes. Anales de medicina interna 18 (6): 326-335.
  • Epstein F.H., Maetz J., Renzis G. (1973). Active transport of chloride by the teleost gill: inhibition by thiocyanate. American Journal of Physiology 224: 1295-1299.
  • Erel O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277-285.
  • Fernández A., Ribeiro J.M., Costas M.J., Pinto R.M., Canales J., Cameselle, J. (1996). Specific ADP-ribose pyrophosphatase from Artemia cysts and rat liver: effects of nitroprusside, fluoride and ionic strength. Biochimica et Biophysica Acta (BBA)-General Subjects 1290(1): 121-127.
  • Flohé L., Günzler W.A. (1984). Assay of glutathione peroxidise. Methods in Enzymology 105: 115-121.
  • Frasco M.F., Guilhermino L (2002) Effects of dimethoate and beta-naphthoflavone on selected biomarkers of Poecilia reticulate. Fish Physiology and Biochemistry 26: 149-156.
  • Gaetani G.F., Galiano S., Canepa L., Ferraris A.M., Kirkman H.N. (1989). Catalase and glutathione peroxidase are equeally active in detoxificacion of hydrogen peroxide in human erythrocytes. Blood Journal 73: 334-339.
  • Gill K.K., Sandhu H.S., Kaur R. (2015). Evaluation of lipid peroxidation and antioxidant status on fenvalerate, nitrate and their co-exposure in Bubalus bubalis. Pesticide biochemistry and physiology 123: 19-23.
  • González P.Y., Aportela G.P. (2001). Determinación de la toxicidad aguda del dicromato de potasio en larvas de Artemia salina. Toxicología 1(1): 104-8.
  • Habig W.H., Pabst M.J, Jakoby W.B. (1974). Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249: 7130-7139.
  • Halliwell B., Gutteridge J.M. (2000). Free radicals in Biology and Medicine. Oxford: 3º ed. Oxford University Press. USA.
  • Hottinger D.G., Beebe D.S., Kozhimannil T., Prielipp R.C., Belani K.G. (2014). Sodium nitroprusside in 2014: A clinical concepts review. Journal of Anaesthesiology Clinical Pharmacology 30(4): 462-471.
  • Huerta M., Ortega M.E., Cobos M., Herrera A.D.C., Guinzberg R. (2005). Estrés oxidativo y el uso de antioxidantes en animales domésticos. Interciencia 30(12): 728-734.
  • Kaehler, S.T.N., Singewald, C., Sinner, Philippu, A. (1999). Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Research 835(2): 346-349.
  • Kaku T., Jiang M. H., Hada J., Morimoto K., Hayashi Y. (2001). Sodium nitroprusside induced seizures and adenosine release in rat hippocampus. European Journal of Pharmacology 413(2-3): 199-205.
  • Libralato G. (2014). The case of Artemia spp. in nanoecotoxicology. Marine Environmental Research 101(0): 38-43.
  • Löhr G.W., Waller H.D. (1960). Glucose 6-phosphate deshydrogenase. Methods of enzymatic analysis 2: 636-641.
  • Lozinsky O.V., Lushchak O.V., Storey J.M., Storey K.B., Lushchak V.I. (2012). Sodium nitroprusside toxicity in Drosophila melanogaster: delayed pupation, reduced adult emergence, and induced oxidative/nitrosative stress in eclosed flies. Archives of insect biochemistry and physiology 80(3): 166-185.
  • Lu Y., Xu X.L., Meng C., Zhou J.Q., Sheng J.J., Wu C.K., Xu S.W. (2013). The toxicity assay of Artemia salina as a biological model for the preliminary toxic evaluation of chemical pollutants. Advanced Materials Research 726: 230-233.
  • Martínez Á., Morales R., Sanz A. (2005). Antioxidant Defenses in Fish. Biotic and Abiotic Factors. Reviews in Fish Biology and Fisher 15: 75-88.
  • McCord J.M., Fridovich I. (1969). Superoxide dismutase: an enzyme function for erytrompreiu. Journal of Biological Chemistry 244 (22): 6049-6055.
  • Misra P. (1984). Inhibition of Superoxide Dismutase by Nitropusside and Electron Spin Resonance Observation on the Formation of a Superoxide Mediated Nitropusside Nitrossyl Free Radical. Journal of Biological Chemistry 259(20): 12678-12684.
  • Mohamed A.H., Sheir S.K., Osman G.Y., Abd-El Azeem H.H. (2014). Toxic effects of heavy metals pollution on biochemical activities of the adult brine shrimp, Artemia salina. Canadian Journal of pure and applied sciences 8 (3):3019-3028.
  • Nazari Q.A., Mizuno K., Kume T., Takada-Takatori Y., Izumi Y., Akaike A. (2012). In Vivo Brain Oxidative Stress Model Induced by Microinjection of Nitropusside in Mice. Journal of Pharmacological Science 120 (2): 105-111.
  • Nikinmaa M. (2014). An Introduction to Aquatic Toxicology. Oxford: Oxford University Press. USA.
  • Nostro P.L., Ninham B. W., Carretti E., Dei L., Baglioni P. (2015). Specific anion effects in Artemia salina.Chemosphere 135: 335-340.
  • Nunes B.S., Carvalho F.D., Guilhermino L.M., Van Stappen G. (2006). Use of the genus Artemia in ecotoxicity testing. Environmental Pollution 144(2): 453-462.
  • Peiqiang Z., Sijun D. (2020). Advances in the Research on Artemia in Aquatic Ecotoxicology. Asian Journal of Ecotoxicology (4): 33-44.
  • Pérez A. (2008). Respuesta nutritiva, metabólica y balance redox del dentón (Dentex dentex) bajo diferentes condiciones nutricionales. Tesis doctoral, Universidad de Granada, Granada, España.
  • Pisoschi A.M., Pop A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry 97(0): 55-74.
  • Posser T., Moretto M.B., Dafre A.L., Farina M., da Rocha J.B.T., Nogueira C.W., Franco J.L. (2006). Antioxidant effect of diphenyl diselenide against sodium nitroprusside (SNP) induced lipid peroxidation in human platelets and erythrocyte membranes: An in vitro evaluation. Chemico-Biological Interactions 164(1-2): 126-135.
  • Prigol M., Bruning C.A., Nogueira C.W. (2009). Protective effect of disubstituted diaryl diselenides on cerebral oxidative damage caused by sodium nitroprusside. Biochemical Engineering Journal 45(2): 94-99.
  • Rajabi S., Ramazani A., Hamidi M., Naji T. (2015). Artemia as a model organism in toxicity assessment of nanoparticles. Journal of Pharemaceutic Sciences 23 (1): 20-26.
  • Ross D., Siegel D. (2004). NAD(P)H:Quinone Oxidoreductase 1 (NQO1, DT-Diaphorase), Functions and Pharmacogenetics. Methods in Enzymology 382: 115-144.
  • Sani M., Sebai H., Ghanem-Boughanmi N., Boughattas N.A., Ben-Attia M. (2014). Dosing-time dependent oxidative effects of sodium nitroprusside in brain, kidney, and liver of mice. Environmental Toxicology and Pharmacology 38(2): 625-633.
  • Schmidt-Nielson K. (1984). Scaling: Why is Animal Size so Important? Cambridge University Press. New York, USA.
  • Sorgeloos P., Bossuyt E., Laviña E., Baeza M., Persoone G. (1977). Decapsulation of Artemia cysts: A simple technique for the improvement of the use of brine shrimp in aquaculture. Aquaculture 12(4): 311-315.
  • Sorgeloos P., C. Remiche C., Persoone G. (1978). The use of Artemia nauplii for toxicity tests. A critical analysis. Ecotoxicology and Environmental Safety 2(3-4): 249-255.
  • Sturve J., Stephensen E., Forlin L. (2005). Effects of redox cycling compounds on DT diaphorase activity in the liver of rainbow trout (Oncorhynchus mykiss). Comparative Hepatology 4(1): 1-4.
  • Torres E., Bustos-Jaimes I., Le Borgne S. (2003). Potential use of oxidative enzymes for the detoxification of organic pollutants. Applied Catalysis B: Environmental 46(1): 1-15.
  • Trenzado C. (2004). Selección parental y dieta como estrategias de atenuación del estrés crónico en la trucha Oncorhynchus mykiss (Walbaum, 1972) Tesis Doctoral, Universidad de Granada, Granada, España.
  • Van Stappen G. (1996). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper 361: 107-136.
  • Wajcman H., Galactéros F. (2004). Le déficit en glucose-6 phosphate déshydrogénase: protection contre le paludisme et risque d'accidents hémolytiques. Comptes Rendus Biologies 327(8): 711-720.
  • Zhang Y., Zhao B. (2003). Green tea polyphenols enhance sodium nitroprusside induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Journal of Neurochemistry 86: 1189-1200.