Factores para el desarrollo del pensamiento computacional en estudiantes de pregrado

  1. Guillermo Rodríguez-Abitia 1
  2. María S. Ramírez-Montoya 2
  3. Edgar O. López-Caudana 2
  4. José M. Romero-Rodríguez 3
  1. 1 Raymond A. Mason School of Business. College of William & Mary, Estados Unidos.
  2. 2 Tecnológico de Monterrey, México.
  3. 3 Universidad de Granada, España.
Journal:
Campus Virtuales

ISSN: 2255-1514

Year of publication: 2021

Volume: 10

Issue: 2

Pages: 153-164

Type: Article

More publications in: Campus Virtuales

Abstract

Computational thinking, commonly associated with engineering and computer science disciplines, can be analyzed in other areas, since this process exceeds the fostering of computing skills and encompasses critical, lateral and creative thinking processes. This article was based on the question: What are the differences in the dimensions of computational thinking among disciplinary areas of undergraduate students? We worked with a cross-sectional study design and convenience sampling, with a 29-item scale to evaluate computational thinking in 95 undergraduate students studying various disciplines in two Mexican universities. The results showed that there were differences with engineering students who have greater critical, algorithmic and problem-solving thinking. In cooperativity and creativity, no significant differences were found between psychology, administrative informatics and engineering students. This article is intended to be of value to researchers, academics, students and decision makers interested in creating scenarios that promote problem solving.

Bibliographic References

  • Arroyo, A. C.; Montes, M. R.; Quilis, J. D. S. (2021). A pilot experience with software programming environments as a service for teaching activities. Applied Sciences (Switzerland), 11(1), 1-15. doi:10.3390/app11010341.
  • Brophy, S. P.; Lowe, T. A. (2017). A learning trajectory for developing computational thinking and programming. In ASEE Annual Conference and Exposition, Conference Proceedings 2017.
  • Calderon, J. F.; Ebers, J. (2018). Problock: A tool for computational thinking development using problem-based learning. In Proceedings - International Conference of the Chilean Computer Science Society, SCCC, 2017. doi:10.1109/SCCC.2017.8405132.
  • da Silva, T. S. C.; de Melo, J. C. B.; Tedesco, P. (2020). The creative process in the development of computational thinking in higher education. In CSEDU 2020 - Proceedings of the 12th International Conference on Computer Supported Education (pp. 215-226).
  • Dettori, L.; Greenberg, R. I.; McGee, S.; Reed, D.; Wilkerson, B.; Yanek, D. (2018). CS as a graduation requirement: Catalyst for systemic change. In SIGCSE 2018 - Proceedings of the 49th ACM Technical Symposium on Computer Science Education (pp. 406-407). doi:10.1145/3159450.3159646.
  • Dragon, T. (2019). Support of teacher's work in the field of development of computational thinking through e-learning resources. In ACM International Conference Proceeding Series (pp. 131-135). doi:10.1145/3345120.3352738.
  • Enriquez, C.; Aguilar, O.; Domínguez, F. (2016). Using robot to motivate computational thinking in high school students. IEEE Latin America Transactions, 14(11), 4620-4625. doi:10.1109/TLA.2016.7795838.
  • Espino, E. E. E.; Soledad, C.; González, C. S. G. (2015). Estudio sobre diferencias de género en las competencias y las estrategias educativas para el desarrollo del pensamiento computacional. Revista de Educación a Distancia (RED), (46).
  • Falkner, K.; Vivian, R.; Falkner, N. (2018). Supporting computational thinking development in K-6. In Proceedings - 2018 6th International Conference on Learning and Teaching in Computing and Engineering (pp. 126-133). doi:10.1109/LaTICE.2018.00031.
  • Gee, E. R.; Tran, K. M. (2015). Video game making and modding. Handbook of research on the societal impact of digital media (pp. 238- 267). doi:10.4018/978-1-4666-8310-5.ch010.
  • Hava, K.; Koyunlu-Ünlü, Z. (2021). Investigation of the Relationship Between Middle School Students’ Computational Thinking Skills and their STEM Career Interest and Attitudes Toward Inquiry. Journal of Science Education and Technology (in press). doi:10.1007/s10956- 020-09892-y.
  • Korkmaz, O.; Bai, X. (2019). Adapting computational thinking scale (CTS) for chinese high school students and their thinking scale skills level. Participatory Educational Research, 6(1), 10-26. doi:10.17275/per.19.2.6.1.
  • Korkmaz, O.; Çakir, R.; Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569. doi:10.1016/j.chb.2017.01.005.
  • Hadad, S.; Shamir-Inbal, T.; Blau, I.; Leykin, E. (2021). Professional development of code and robotics teachers through small private online course (SPOC): Teacher centrality and pedagogical strategies for developing computational thinking of students. Journal of Educational Computing Research, 59(4), 763-791. doi:10.1177/0735633120973432.
  • Israel-Fishelson, R.; Hershkovitz, A.; Eguíluz, A.; Garaizar, P.; Guenaga, M. (2021). The associations between computational thinking and creativity: The role of personal characteristics. Journal of Educational Computing Research, 58(8), 1415-1447. doi:10.1177/0735633120940954.
  • Isvik, A.; Catete, V.; Barnes, T. (2020). FLAMES: A socially relevant computing summer internship for high school students. In 2020 Research on Equity and Sustained Participation in Engineering, Computing, and Technology, RESPECT 2020 – Proceedings. doi:10.1109/RESPECT49803.2020.9272515.
  • Madeira, C. (2017). Introduction to computational thinking with scratch. In CEUR Workshop Proceedings (pp. 725-730).
  • McGee, S.; Duck, J.; Greenberg, R. I.; Rasmussen, A. M.; Reed, D. F.; McGee-Tekula, R.; Dettori, L. (2019). An examination of the correlation of exploring computer science course performance and the development of programming expertise. In SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 1067-1073). doi:10.1145/3287324.3287415.
  • McGee, S.; McGee-Tekula, R.; Duck, J.; McGee, C.; Dettori, L.; Greenberg, R. I.; ...; Brylow, D. (2018). Equal outcomes 4 all: A study of student learning in ECS. In SIGCSE 2018 - Proceedings of the 49th ACM Technical Symposium on Computer Science Education (pp. 50-55). doi:10.1145/3159450.3159529.
  • Monjelat, N. (2019). Programming technologies for social inclusion with scratch: Computational practices in a teacher’s professional development course. [Programación de tecnologías para la inclusión social con Scratch: Prácticas sobre el pensamiento computacional en la formación docente]. Revista Electronica Educare, 23(3). doi:10.15359/ree.23-3.9.
  • Organización Mundial de la Salud – OMS (2017). Ciclo de vida. (https://bit.ly/2M5jsh5).
  • Rodríguez del Rey, Y. A.; Cawanga Cambinda, I. N.; Deco, C.; Bender, C.; Avello-Martínez, R.; Villalba-Condori, K. O. (2021). Developing computational thinking with a module of solved problems. Computer Applications in Engineering Education, 29(3), 506-516. doi:10.1002/cae.22214.
  • Scival (2021). Herramienta de Scopus. (https://www.scival.com/landing).
  • Tsai, M. J. ; Liang, J. C. ; Hsu, C. Y. (2020). The Computational Thinking Scale for Computer Literacy Education. Journal of Educational Computing Research. doi:10.1177/0735633120972356.
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725. doi:10.1098/rsta.2008.0118.