Hypoconnectivity networks in schizophrenia patientsa voxel-wise meta-analysis of Rs-fMRI

  1. Silvia Ruiz-Torras 1
  2. Esteve Gudayol-Ferré 2
  3. Oscar Fernández-Vazquez 1
  4. Cristina Cañete-Massé 1
  5. Maribel Peró-Cebollero 1
  6. Joan Guàrdia-Olmos 1
  1. 1 Universitat de Barcelona
    info

    Universitat de Barcelona

    Barcelona, España

    ROR https://ror.org/021018s57

  2. 2 Universidad Michoacana San Nicolás de Hidalgo, Mexico
Revista:
International journal of clinical and health psychology

ISSN: 1697-2600

Año de publicación: 2023

Volumen: 23

Número: 4

Páginas: 201-210

Tipo: Artículo

DOI: 10.1016/J.IJCHP.2023.100395 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: International journal of clinical and health psychology

Resumen

Background In recent years several meta-analyses regarding resting-state functional connectivity in patients with schizophrenia have been published. The authors have used different data analysis techniques: regional homogeneity, seed-based data analysis, independent component analysis, and amplitude of low frequencies. Hence, we aim to perform a meta-analysis to identify connectivity networks with different activation patterns between people diagnosed with schizophrenia and healthy controls using voxel-wise analysis. Method: We collected primary studies exploring whole brain connectivity by functional magnetic resonance imaging at rest in patients with schizophrenia compared with healthy controls. We identified 25 studies included high-quality studies that included 1285 patients with schizophrenia and 1279 healthy controls. Results: The results indicate hypoactivation in the right precentral gyrus and the left superior temporal gyrus of patients with schizophrenia compared with healthy controls. Conclusions: These regions have been linked with some clinical symptoms usually present in Plea with schizophrenia, such as auditory verbal hallucinations, formal thought disorder, and the comprehension and production of gestures.

Referencias bibliográficas

  • Albajes-Eizagirre, A., Solanes, A., Vieta, E., Salvador, R., Pomarol, E., & Radua, J. (2021). Voxel-based meta-analysis via permutation of subject images (PSI): Theory and implementation for SDM. NeuroImage, 186, 174–184. https://doi.org/10.1016/j. neuroimage.2021.117859
  • Alderson-Day, B., Diederen, K., Fernyhough, C., Ford, J. M., Horga, G., Margulies, D. S., … Jardri, R. (2016). Auditory hallucinations and the brain’s resting-state networks: Findings and methodological observations. Schizophrenia Bulletin, 42(5), 1110–1123. https://doi.org/10.1093/schbul/sbw078
  • Alonso-Solís, A., Vives-Gilabert, Y., Portella, M. J., Rabella, M., Grasa, E. M., Rolda´n, A., Keymer-Gausset, A., Molins, C., Nún˜ez-Marín, F., Go´mez-Anso´n, B., A´lvarez, E., & Corripio, I. (2017). Altered amplitude of low frequency fluctuations in schizophrenia patients with persistent auditory verbal hallucinations. Schizophrenia Research, 189, 97–103. https://doi.org/10.1016/j.schres.2017.01.042
  • Andric, M., & Small, S. L. (2012). Gesture’s neural language. Frontiers in psychology, 3, 99. https://doi.org/10.3389/fpsyg.2012.00099
  • Bai, Y., Wang, W., Xu, J., Zhang, F., Yu, H., Luo, C., Wang, L., Chen, X., Shan, B., Xu, L., Xu, X., & Cheng, Y. (2016). Altered resting-state regional homogeneity after 13 weeks of paliperidone injection treatment in schizophrenia patients. Psychiatry Research: Neuroimaging, 258, 37–43. https://doi.org/10.1016/j. pscychresns.2016.10.008
  • Bluhm, R. L., Miller, J., Lanius, R. A., Osuch, E. A., Boksman, K., Neufeld, R. W. J., … Williamson, P. (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophrenia Bulletin, 33(4), 1004–1012. https://doi.org/10.1093/schbul/sbm052
  • Cavelti, M., Kircher, T., Nagels, A., Strik, W., & Homan, P. (2018). Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? A systematic review of neuroimaging findings. Schizophrenia Research, 199, 2–16. 10.1016/j.schres.2018.02.051.
  • Cañete, C., Carbo, M., Pero´, M., & Guardia, J. (2021). Task-related brain activation fMRI in intellectual disability population: A metanalytic study. Brain Connectivity, 788–798. https://doi.org/10.1089/brain.2020.0911
  • Chen, Z. Q., Du, M. Y., Zhao, Y. J., Huang, X. Q., Li, J., Lui, S., Hu, J., Sun, H., Liu, J., Kemp, G. J., & Gong, Q. Y (2015). Voxel-wise meta-analyses of brain blood flow and local synchrony abnormalities in medication-free patients with major depressive disorder. Journal of Psychiatry & Neuroscience, 40, 401–411. https://doi.org/ 10.1503/jpn.140119
  • Ding, Y., Ou, Y., Su, Q., Pan, P., Shan, X., Chen, J., Liu, F., Zhang, Z., Zhao, J., & Guo, W. (2019). Enhanced global-brain functional connectivity in the left superior frontal gyrus as a possible endophenotype for schizophrenia. Frontiers in Neuroscience, 13, 145. https://doi.org/10.3389/fnins.2019.00145
  • Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophrenia Bulletin, 44(1), 168–181. https://doi.org/10.1093/schbul/sbx034
  • Fryer, S. L., Roach, B. J., Ford, J. M., Turner, J. A., Van Erp, T. G., Voyvodic, J., Preda, A., Belger, A., Bustillo, J., O’Leary, D., Mueller, B. A., Lim, K. O., McEwen, S. C., Calhoun, V. D., Diaz, M., Glover, G., Greve, D., Wible, C. G., Vaidya, J., … Mathalon, D. H. (2015). Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia. Neuropsychopharmacology, 40(12), 2705–2714. https://doi.org/10.1038/npp.2015.119
  • Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250–254. https://doi.org/10.1016/j.conb.2012.10.002
  • Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome. Clinical Neuroscience, 3(2), 89–97.
  • Forlim, C. G., Klock, L., Bachle, J., Stoll, L., Giemsa, P., Fuchs, M., Shoofs, N., Montag, C., Gallinat, J., & Kühn, S. (2020). Reduced resting-state connectivity in the precuneus is correlated with apathy in patients with schizophrenia. Scientific Reports, 10(1), 2616. https://doi.org/10.1038/s41598-020-59393-6
  • Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T., & Carter, C. S. (2011). General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biological Psychiatry, 70(1), 64–72. https://doi.org/ 10.1016/j.biopsych.2011.02.019
  • Gao, B., Wang, Y., Liu, W., Chen, Z., Zhou, H., Yang, J., Cohen, Z., Zhu, Y., & Zang, Y. (2015). Spontaneous activity associated with delusions of schizophrenia in the left medial superior frontal gyrus: A resting-state fMRI study. PLoS One, 10(7), Article e0133766. https://doi.org/10.1371/journal.pone.0133766
  • Gao, S., Lu, S., Shi, X., Ming, Y., Xiao, C., Sun, J., Yao, H., & Xu, X. (2018). Distinguishing between treatment-resistant and non-treatment-resistant schizophrenia using regional homogeneity. Frontiers in Psychiatry, 9, 282. https://doi.org/10.3389/ fpsyt.2018.00282
  • Geoffroy, P. A., Houenou, J., Duhamel, A., Amad, A., De Weijer, A. D., Curcic-Blake, B., … Jardri, R. (2014). The arcuate fasciculus in auditory-verbal hallucinations: A meta-analysis of diffusion-tensor-imaging studies. Schizophrenia Research, 159(1), 234–237. https://doi.org/10.1016/j.schres.2014.07.014
  • Gong, J., Wang, J., Luo, X., Chen, G., Huang, H., Huang, R., Huang, L., & Wang, Y. (2020). Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: A meta-analysis of resting-state functional MRI. Journal of Psychiatry & Neuroscience, 45(1), 55–68. https://doi.org/10.1503/jpn.180245
  • Gou, N., Liu, Z., Palaniyappan, L., Li, M., Pan, Y., Chen, X., Tao, H., Wu, G., Ouyang, X., Wang, Z., Dou, T., Xue, Z., & Pu, W. (2018). Effects of DISC1 polymorphisms on resting-state spontaneous neuronal activity in the early-stage of schizophrenia. Frontiers in Psychiatry, 9, 137. https://doi.org/10.3389/fpsyt.2018.00137
  • Guo, W., Liu, F., Chen, J., Wu, R., Li, L., Zhang, Z., Chen, H., & Zhao, J. (2017). Treatment effects of olanzapine on homotopic connectivity in drug-free schizophrenia at rest. The World Journal of Biological Psychiatry, 19(sup3), S106–S114. https://doi.org/10.1080/15622975.2017.1346280
  • Guo, W., Liu, F., Chen, J., Wu, R., Li, L., Zhang, Z., & Zhao, J. (2016). Olanzapine modulation of long-and short-range functional connectivity in the resting brain in a sample of patients with schizophrenia. European Neuropsychopharmacology, 27(1), 48–58. https://doi.org/10.1016/j.euroneuro.2016.11.002
  • Guo, W., Liu, F., Xiao, C., Liu, J., Yu, M., Zhang, Z., Zhang, J., & Zhao, J. (2015). Increased short-range and long-range functional connectivity in first-episode, medication-naive schizophrenia at rest. Schizophrenia Research, 166(1-3), 144–150. https://doi.org/10.1016/j.schres.2015.04.034
  • He, Z., Deng, W., Li, M., Chen, Z., Jiang, L., Wang, Q., … Li, T. (2013). Aberrant intrinsic brain activity and cognitive deficit in first-episode treatment-naive patients with schizophrenia. Psychological Medicine, 43(4), 769–780. https://doi.org/10.1017/ S0033291712001638
  • Horne, C. M., Vanes, L. D., Verneuil, T., Mouchlianitis, E., Szentgyorgyi, T., Averbeck, B., … Shergill, S. S. (2021). Cognitive control network connectivity differentially disrupted in treatment resistant schizophrenia. NeuroImage: Clinical, 30, Article 102631. https://doi.org/10.1016/j.nicl.2021.102631
  • Huang, H., Botao, Z., Jiang, Y., Tang, Y., Zhang, T., Tang, X., & Wang, J. (2019). Aberrant resting-state functional connectivity of salience network in first-episode schizophrenia. Brain Imaging and Behavior, 3(6), 1–11. https://doi.org/10.1007/ s11682-019-00040-8
  • Kasai, K., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Lee, C. U., Ciszewski, A. A., … McCarley, R. W. (2003). Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. American Journal of Psychiatry, 160(1), 156–164. https://doi.org/10.1176/appi.ajp.160.1.156
  • Kircher, T. T., Liddle, P. F., Brammer, M. J., Williams, S. C., Murray, R. M., & McGuire, P. K. (2001). Neural correlates of formal thought disorder in schizophrenia: Preliminary findings from a functional magnetic resonance imaging study. Archives of General Psychiatry, 58(8), 769–774. https://doi.org/10.1001/archpsyc.58.8.769
  • Kircher, T. T., Liddle, P. F., Brammer, M. J., Williams, S. C. R., Murray, R. M., & McGuire, P. K. (2002). Reversed lateralization of temporal activation during speech production in thought disordered patients with schizophrenia. Psychological Medicine, 32(3), 439–449. https://doi.org/10.1017/S0033291702005287
  • Kühn, S., & Gallinat, J. (2013). Resting-state brain activity in schizophrenia and major depression: a quantitative meta-analysis. Schizophrenia Bulletin, 39(2), 358–365. https://doi.org/10.1093/schbul/sbr151
  • Larivi`ere, S., Lavigne, K. M., Woodward, T. S., Gerretsen, P., Graff-Guerrero, A., & Menon, M. (2017). Altered functional connectivity in brain networks underlying self- referential processing in delusions of reference in schizophrenia. Psychiatry Research: Neuroimaging, 263, 32–43. https://doi.org/10.1016/j.pscychresns.2017.03.005
  • Li, H., Ou, Y., Liu, F., Chen, J., Zhao, J., Guo, W., & Fan, X. (2019). Reduced connectivity in anterior cingulate cortex as an early predictor for treatment response in drug- naive, first-episode schizophrenia: A global-brain functional connectivity analysis. Schizophrenia Research, 215, 337–343. https://doi.org/10.1016/j. schres.2019.09.003
  • Li, S., Hu, N., Zhang, W., Tao, B., Dai, J., Gong, Y., Tan, Y., Cai, D., & Lui, S. (2019). Dysconnectivity of multiple brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Frontiers in Psychiatry, 10, 482. https://doi.org/ 10.3389/fpsyt.2019.00482
  • Li, Z., Lei, W., Deng, W., Zheng, Z., Li, M., Ma, X., Wang, Q., Huang, X., Li, N., Collier, D. A., Gong, Q., & Li, T. (2017). Aberrant spontaneous neural activity and correlation with evoked-brain potentials in first-episode, treatment-naïve patients with deficit and non-deficit schizophrenia. Psychiatry Research: Neuroimaging, 261, 9–19. https://doi.org/10.1016/j.pscychresns.2017.01.001
  • Liang, Y., Shao, R., Zhang, Z., Li, X., Zhou, L., & Guo, S. (2019). Amplitude of low- frequency fluctuations in childhood-onset schizophrenia with or without obsessive- compulsive symptoms: A resting-state functional magnetic resonance imaging study. Archives of Medical Science, 15(1), 126. https://doi.org/10.5114/aoms.2018.73422
  • Liao, W., Yang, S., Li, J., Fan, Y. S., Duan, X., Cui, Q., & Chen, H. (2019). Nicotine in action: Cigarette smoking modulated homotopic functional connectivity in schizophrenia. Brain Imaging and Behavior, 13(6), 1612–1623. https://doi.org/ 10.1007/s11682-018-0001-3
  • Liu, C., Xue, Z., Palaniyappan, L., Zhou, L., Liu, H., Qi, C., Wu, G., Mwansisya, T. E., Tao, H., Chen, X., Huang, X., Liu, Z., & Pu, W. (2016). Abnormally increased and incoherent resting-state activity is shared between patients with schizophrenia and their unaffected siblings. Schizophrenia Research, 171(1–3), 158–165. https://doi. org/10.1016/j.schres.2016.01.022
  • Liu, H., Liu, Z., Liang, M., Hao, Y., Tan, L., Kuang, F., Yi, Y., Xu, L., & Jiang, T. (2006). Decreased regional homogeneity in schizophrenia: A resting state functional magnetic resonance imaging study. Neuroreport, 17(1), 19–22. https://doi.org/ 10.1097/01.wnr.0000195666.22714.35
  • Liu, Y., Zhang, Y., Lv, L., Wu, R., Zhao, J., & Guo, W. (2017). Abnormal neural activity as a potential biomarker for drug-naive first-episode adolescent-onset schizophrenia with coherence regional homogeneity and support vector machine analyses. Schizophrenia Research, 192, 408–415. https://doi.org/10.1016/j. schres.2017.04.028
  • Menon, V., Palaniyappan, L., & Supekar, K. (2022). Integrative brain network and salience models of psychopathology and cognitive dysfunction in schizophrenia. Biological Psychiatry. https://doi.org/10.1016/j.biopsych.2022.09.029
  • Moran, L. V., Tagamets, M. A., Sampath, H., O’Donnell, A., Stein, E. A., Kochunov, P., & Hong, L. E. (2013). Disruption of anterior insula modulation of large-scale brain networks in schizophrenia. Biological Psychiatry, 74(6), 467–474. https://doi.org/ 10.1016/j.biopsych.2013.02.029
  • Müller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., & Eickhoff, S. B. (2018). Ten simple rules for neuroimaging meta-analysis. Neuroscience & Biobehavioural Reviews, 84, 151–161. https://doi.org/10.1016/j. neubiorev.2017.11.012
  • Mwansisya, T. E., Hu, A., Li, Y., Chen, X., Wu, G., Huang, X., & Liu, Z. (2017). Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophrenia Research, 189, 9–18. https://doi.org/10.1016/j.schres.2017.02.026
  • Nagels, A., Kircher, T., Grosvald, M., Steines, M., & Straube, B. (2019). Evidence for gesture-speech mismatch detection impairments in schizophrenia. Psychiatry Research, 273, 15–21. https://doi.org/10.1016/j.psychres.2018.12.107
  • Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. The Lancet, 388, 86–97. https://doi.org/10.1016/s0140-6736(15)01121-6
  • Palaniyappan, L., & Liddle, P. F. (2012). Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. Journal of Psychiatry and Neuroscience, 37(1), 17–27. https://doi.org/10.1503/jpn.100176
  • Plaze, M., Bartr´es-Faz, D., Martinot, J. L., Januel, D., Bellivier, F., De Beaurepaire, R., … Paill`ere-Martinot, M. L. (2006). Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients. Schizophrenia Research, 87(1–3), 109–115. https://doi.org/ 10.1016/j.schres.2006.05.005
  • Radua, J., & Mataix, D. (2012). Meta-analytic methods for neuroimaging data explained. Biological Mood Anxiety Disorders, 2, 6. https://doi.org/10.1186/2045-5380-2-6
  • Ray, K. L., Lesh, T. A., Howell, A. M., Salo, T. P., Ragland, J. D., MacDonald, A. W., … Carter, C. S. (2017). Functional network changes and cognitive control in schizophrenia. NeuroImage: Clinical, 15, 161–170. https://doi.org/10.1016/j. nicl.2017.05.001
  • Ren, W., Lui, S., Deng, W., Li, F., Li, M., Huang, X., Wang, Y., Li, T., Sweeney, J. A., & Gong, Q. (2013). Anatomical and functional brain abnormalities in drug-naive first- episode schizophrenia. American Journal of Psychiatry, 170(11), 1308–1316. https:// doi.org/10.1176/appi.ajp.2013.12091148
  • Sommer, I. E., Clos, M., Meijering, A. L., Diederen, K. M., & Eickhoff, S. B. (2012). Resting state functional connectivity in patients with chronic hallucinations. PLoS One, 7(9), e43516. https://doi.org/10.1371/journal.pone.0043516
  • Shepherd, A. M., Matheson, S. L., Laurens, K. R., & Green, M. J. (2012). Systematic meta- analysis of insula volume in schizophrenia. Biological Psychiatry, 72, 775–784. https://doi.org/10.1016/j.biopsych.2012.04.020
  • Skudlarski, P., Jagannathan, K., Anderson, K., Stevens, M. C., Calhoun, V. D., Skudlarska, B. A., & Pearlson, G. (2010). Brain connectivity is not only lower but different in schizophrenia: A combined anatomical and functional approach. Biological Psychiatry, 68(1), 61–69. https://doi.org/10.1016/j.biopsych.2010.03.035
  • Takahashi, T., Wood, S. J., Yung, A. R., Soulsby, B., McGorry, P. D., Suzuki, M., … Pantelis, C. (2009). Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis. Archives of General Psychiatry, 66(4), 366–376. https://doi.org/10.1001/archgenpsychiatry.2009.12
  • Turner, J. A., Damaraju, E., Van Erp, T. G., Mathalon, D. H., Ford, J. M., Voyvodic, J., Mueller, B. A., Belger, A., Bustillo, J., McEwen, S., Potkin, S. G., & Calhoun, V. D. (2013). A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Frontiers in Neuroscience, 7, 137. https://doi.org/ 10.3389/fnins.2013.00137
  • Van Den Heuvel, M. P., & Fornito, A (2014). Brain networks in schizophrenia. Neuropsychology Review, 24, 32–48. https://doi.org/10.1007/s11065-014-9248-7
  • Viher, P. V., Stegmayer, K., Kubicki, M., Karmacharya, S., Lyall, A. E., Federspiel, A., … Walther, S. (2018). The cortical signature of impaired gesturing: findings from schizophrenia. NeuroImage: Clinical, 17, 213–221. https://doi.org/10.1016/j. nicl.2017.10.017
  • Walther, S., Alexaki, D. D., Stegmayer, K. D. L., Vanbellingen, T., & Bohlhalter, S. (2020). Conceptual disorganization impairs hand gesture performance in schizophrenia. Schizophrenia Research, 215, 467–468. https://doi.org/10.1016/j. schres.2019.09.001
  • Walther, S., Mittal, V. A., Stegmayer, K., & Bohlhalter, S. (2020). Gesture deficits and apraxia in schizophrenia. Cortex, 133, 65–75. https://doi.org/10.1016/j. cortex.2020.09.017
  • Walther, S., Stegmayer, K., Sulzbacher, J., Vanbellingen, T., Müri, R., Strik, W., & Bohlhalter, S. (2015). Nonverbal social communication and gesture control in schizophrenia. Schizophrenia Bulletin, 41(2), 338–345. https://doi.org/10.1093/ schbul/sbu222
  • Wang, S., Zhan, Y., Zhang, Y., Lyu, L., Lyu, H., Wang, G., Wu, R., Zhao, J., & Guo, W. (2018). Abnormal long-and short-range functional connectivity in adolescent-onset schizophrenia patients: A resting-state fMRI study. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 81, 445–451. https://doi.org/ 10.1016/j.pnpbp.2017.08.012
  • Weinstein, S., Werker, J. F., Vouloumanos, A., Woodward, T. S., & Ngan, E. T. (2006). Do you hear what I hear? Neural correlates of thought disorder during listening to speech in schizophrenia. Schizophrenia Research, 86(1–3), 130–137. https://doi.org/ 10.1016/j.schres.2006.05.011
  • Wolf, N., Gron, G., Sambataro, F., Vasic, N., Frasch, K., & Schmid, M. (2012). Magnetic resonance perfusion imaging of auditory verbal hallucinations in patients with schizophrenia. Schizophrenia Research, 134(2–3), 285–287. https://doi.org/10.1016/ j.schres.2011.11.018
  • Woodruff, P. W., Wright, I. C., Bullmore, E. T., Brammer, M., Howard, R. J., Williams, S. C., … Murray, R. M. (1997). Auditory hallucinations and the temporal cortical response to speech in schizophrenia: A functional magnetic resonance imaging study. American Journal of Psychiatry, 154(12), 1676–1682. https://doi.org/ 10.1176/ajp.154.12.1676
  • Woodward, N. D., Rogers, B., & Heckers, S. (2011). Functional resting-state networks are differentially affected in schizophrenia. Schizophrenia Research, 130(1–3), 86–93. https://doi.org/10.1016/j.schres.2011.03.010
  • Wüthrich, F., Pavlidou, A., Stegmayer, K., Eisenhardt, S., Moor, J., Sch¨appi, L., … Walther, S. (2020). Nonverbal communication remains untouched: No beneficial effect of symptomatic improvement on poor gesture performance in schizophrenia. Schizophrenia Research, 223, 258–264. https://doi.org/10.1016/j. schres.2020.08.013
  • Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS One, 8, Article e0068910. https://doi.org/ 10.1371/journal.pone.0068910
  • Xiao, B., Wang, S., Liu, J., Meng, T., He, Y., & Luo, X. (2017). Abnormalities of localized connectivity in schizophrenia patients and their unaffected relatives: a meta-analysis of resting-state functional magnetic resonance imaging studies. Neuropsychiatric Disease and Treatment, 13, 467. https://doi.org/10.2147/NDT.S126678
  • Yan, W., Zhang, R., Zhou, M., Lu, S., Li, W., Xie, S., & Zhang, N. (2020). Relationships between abnormal neural activities and cognitive impairments in patients with drug- naive first-episode schizophrenia. BMC Psychiatry, 20, 283. https://doi.org/ 10.1186/s12888-020-02692
  • Yang, J., Andric, M., & Mathew, M. M. (2015). The neural basis of hand gesture comprehension: A meta-analysis of functional magnetic resonance imaging studies. Neuroscience & Biobehavioral Reviews, 57, 88–104. https://doi.org/10.1016/j. neubiorev.2015.08.006
  • Yu, R., Hsieh, M. H., Wang, H. L. S., Liu, C. M., Liu, C. C., Hwang, T. J., Chien, Y. L., Hwu, H. G., & Tseng, W. Y. I. (2013). Frequency dependent alterations in regional homogeneity of baseline brain activity in schizophrenia. PLoS One, 8(3), e57516. https://doi.org/10.1371/journal.pone.0057516
  • Yue, Y., Jiang, Y., Shen, T., Pi, J., Lai, H., & Zhang, B. (2020). ALFF and ReHo mapping reveals different functional patterns in early- and late-onset Parkinson’s disease. Frontiers in Neuroscience, 25(14). https://doi.org/10.3389/fnins.2020.00141
  • Zhang, T., Li, C., Li, P., Peng, Y., Kang, X., Jiang, C., … Xu, P. (2020). Separated channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site rs-fMRI dataset. Entropy, 22(8), 893. https://doi.org/10.3390/e22080893
  • Zhao, X., Yao, J., Lv, Y., Zhang, X., Han, C., Chen, L., Ren, F., Jin, Z., Li, Y., & Sui, Y. (2019). Abnormalities of regional homogeneity and its correlation with clinical symptoms in naïve patients with first-episode schizophrenia. Brain Imaging and Behavior, 13(2), 503–513. https://doi.org/10.1007/s11682-018-9882-4
  • Zheng, J., Zhang, Y., Guo, X., Duan, X., Zhang, J., Zhao, J., & Chen, H. (2016). Disrupted amplitude of low-frequency fluctuations in antipsychotic-naive adolescents with early-onset schizophrenia. Psychiatry Research: Neuroimaging, 249, 20–26. https:// doi.org/10.1016/j.pscychresns.2015.11.006
  • Zhu, F., Liu, F., Guo, W., Chen, J., Su, Q., Zhang, Z., Li, H., Fan, X., & Zhao, J. (2018). Disrupted asymmetry of inter-and intra-hemispheric functional connectivity in patients with drug-naive, first-episode schizophrenia and their unaffected siblings. EBioMedicine, 36, 429–435. https://doi.org/10.1016/j.ebiom.2018.09.012