MARIO
CHICA OLMO
Investigador en el periodo 2003-2024
V. F.
Rodríguez-Galiano
Publicaciones en las que colabora con V. F. Rodríguez-Galiano (37)
2018
-
Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods
Science of the Total Environment, Vol. 624, pp. 661-672
2017
-
A methodology for assessing public health risk associated with groundwater nitrate contamination: a case study in an agricultural setting (southern Spain)
Environmental Geochemistry and Health, Vol. 39, Núm. 5, pp. 1117-1132
2015
-
Cartografía de potencialidad de oro en Rodalquilar: Uso de imágenes hiperespectrales Hyperion como fuente de información
Teledetección, humedales y espacios protegidos: Libro de actas del XVI Congreso de la Asociación Española de Teledetección
-
Compositional cokriging for mapping the probability risk of groundwater contamination by nitrates
Science of the Total Environment, Vol. 532, pp. 162-175
-
Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
Ore Geology Reviews, Vol. 71, pp. 804-818
-
New insights into geochemical behaviour in ancient marine carbonates (Upper Jurassic Ammonitico Rosso): Novel proxies for interpreting sea-level dynamics and palaeoceanography
Sedimentology, Vol. 62, Núm. 1, pp. 266-302
2014
-
Analysis of the parametrization needs of different land cover classifiers: The case study of granda province (Spain)
Lecture Notes in Earth System Sciences, Vol. 0, pp. 123-126
-
Categorical indicator kriging for assessing the risk of groundwater nitrate pollution: The case of Vega de Granada aquifer (SE Spain)
Science of the Total Environment, Vol. 470-471, pp. 229-239
-
Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)
Science of the Total Environment, Vol. 476-477, pp. 189-206
-
Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain
International Journal of Geographical Information Science, Vol. 28, Núm. 7, pp. 1336-1354
-
Quantitative risk management of groundwater contamination by nitrates using indicator geostatistics
Lecture Notes in Earth System Sciences, Vol. 0, pp. 533-536
-
Regression trees for modeling geochemical data-An application to Late Jurassic carbonates (Ammonitico Rosso)
Computers and Geosciences, Vol. 73, pp. 198-207
2012
-
A comparative assessment of different methods for Landsat 7/ETM+ pansharpening
International Journal of Remote Sensing, Vol. 33, Núm. 20, pp. 6574-6599
-
A comparative assessment of different methods for Landsat 7/ETM+ pansharpening
International Journal of Computers and their Applications, Vol. 33, Núm. 20
-
An assessment of the effectiveness of a random forest classifier for land-cover classification
ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 67, Núm. 1, pp. 93-104
-
Análisis espacial del riesgo de contaminación por nitratos de las aguas subterráneas del acuífero de la Vega de Granada y sus implicaciones sanitarias
El agua en Andalucía: retos y avances en el inicio del milenio (Instituto Geológico y Minero de España), pp. 1259-1268
-
Cartografía del epikarst integrando información de campo, geología e imágenes de satélite: caso de Sierra de las Nieves (Málaga)
El agua en Andalucía: retos y avances en el inicio del milenio (Instituto Geológico y Minero de España), pp. 1611-1620
-
Construcción de mapas de vulnerabilidad de acuíferos mediante modelos basados en reglas difusas y geoestadística
Geotemas (Madrid), Núm. 13, pp. 1056-1059
-
Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images
International Journal of Applied Earth Observation and Geoinformation, Vol. 18, Núm. 1, pp. 515-527
-
Incorporating the downscaled Landsat TM thermal band in land-cover classification using random forest
Photogrammetric Engineering and Remote Sensing, Vol. 78, Núm. 2, pp. 129-137